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Min-protein oscillation in Escherichia coli has an essential role in controlling the accurate
placement of the cell division septum at the middle-cell zone of the bacteria. This biochem-
ical process has been successfully described by a set of reaction–diffusion equations at the
macroscopic level. The lattice Boltzmann method (LBM) has been used to simulate Min-
protein oscillation and proved to recover the correct macroscopic equations. In this present
work, we studied the effects of LBM boundary conditions (BC) on Min-protein oscillation.
The impact of diffusion and reaction dynamics on BCs was also investigated. It was found
that the mirror-image BC is a suitable boundary treatment for this Min-protein model. The
physical significance of the results is extensively discussed.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Cell division is a crucial event in the life of every organism. Most bacteria divide symmetrically so that both of the newly
formed daughter cells contain a copy of the chromosome. In Escherichia coli (E. coli) and other rod-shaped bacteria, the accu-
rate partitioning process and the proper placement of the septum are precisely restricted to midcell by the effect of nucleoid
occlusion [1–4] and the MinCDE protein system [1,2,5]. The nucleoid occlusion mechanism blocks Z-ring formation from all
sites except the nucleoid-free-zones, while the Min system prevents the septum proteins at the cell poles [6]. The Min-pro-
tein system consists of MinC, MinD, and MinE proteins [5]. MinC is recruited to the membrane by MinD, and inhibits the
formation of the septum proteins in terms of the MinCD complex [7–10]. MinE is also recruited to the membrane by MinD.
In the absence of MinE, MinCD is distributed homogeneously over the entire membrane [11], which blocks septum protein
formation at all sites. MinD performs oscillation pole-to-pole, driven by MinE [12]. MinC also colocalizes and cooscillates
with MinD [7,8], so that the time-averaged concentration of MinC is lowest at midcell [12]. As MinC inhibits septum protein
formation, the septum can assemble only near the midcell area.

According to this protein mechanism, Howard et al. [13] proposed the coarse-grained nonlinear reaction–diffusion model
for studying the self-organized protein pattern and identifying midcell topological markers. Although this model is simple, it
can demonstrate the oscillation pattern and positional information of the cell division process via the Min-protein system;
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however, the dynamics is a continuum version at the macroscopic level. Recently, the mesoscopic dynamics approach as-
sumed the implementation of the lattice Boltzmann method (LBM) [14] for the Min-protein system [15,16]. The method
was shown to recover the Howard model at the macroscopic level [15,16]. In addition, the numerical results from this tech-
nique were consistent with experimental results [12,17,18]. Hence the LBM approach is an effective alternative tool for
studying Min-protein oscillation, which naturally deals with particle dynamics.

LBM uses an alternative numerical scheme for simulating fluid dynamics. This method evolved from the lattice gas model,
which involves many stochastic or random processes resulting in noise or fluctuations. It has provided insights into the
underling particle dynamics of the physical system, whereas most other approaches focus only on the solution of the mac-
roscopic equation. The advantage of LBM is that it is easy to implement for several shape boundaries due to the nature of
particle kinetics. It is perhaps reasonable to say that LBM operates at the mesoscopic level, which is in between the micro-
scopic (lattice gas) and macroscopic (continuum) level. Though LBM consumes tremendously large computing resources, the
amount is still relatively small compared to those consumed with other approaches, like molecular dynamic and Monte Carlo
simulations—which could the main reason why LBM has become the more favored method. LBM has been particularly suc-
cessful in simulating fluid flow for a broad variety of complex physical systems, such as multiphase and multi-component
fluids [19], advection–dispersion [20], and blood flow [21–23]. However, the LBM boundary treatments, in some situations,
have critical effects on the solution at the macroscopic level. As pointed out by Zhang et al. [24], the standard boundary con-
ditions are not accurate for the class of dispersion transport modeled by LBM. They suggested that the mirror-image method
is a suitable boundary treatment to address this problem. The boundary treatment for LBM simulation is an important issue
and progress is still being made [24–26].

In this present work, we re-examined the LBM boundary effects on Min-protein oscillation. We applied the impermeable
boundary condition suggested by Zhang et al. and the mid-grid bounce-back boundary condition [27] to our reaction–diffu-
sion lattice Boltzmann model. We then compared the results from two boundary conditions in both one- and two-dimen-
sional cases. This paper is the first one to demonstrate the effect of boundary conditions in the LBM reaction diffusion
model, especially on the intracellular process.

This paper is outlined as follows: In Section 2, we briefly review the reaction–diffusion model for MinCDE oscillation by
Howard et al. In Section 3, the details for the LMB algorithm and boundary conditions are explained. Finally, the numerical
results are discussed in Section 4.

2. Model

The dynamics of the interaction between MinD (in the complex with MinC) and MinE proteins have been proposed by
Howard et al. [13] through a set of reaction–diffusion equations (RDEs). In this model, they describe the time rates of density
change due to the diffusions of MinD and MinE, and the mass transfer between the cell membrane and the cytoplasm. The
local mass densities for each Min-protein are denoted by: qD for cytoplasmic MinD, qd for membrane-bound MinD, qE for
cytoplasmic MinE, and qe for membrane-bound MinE. In general form, the RDEs can be written as
@qc

@t
� Dc

@2qc

@x2
a
¼ Rc; ð2:1Þ
where qc ¼ qc ~x; tð Þ is the local mass density of protein species c = {D,d,E,e} at position ~x (with xa as the components) and
time t; Rc = Rc({qc}) is the reaction term which depends on the density set of the species {qc}; Dc is the isotropic diffusion
coefficient. The reaction terms for each Min-protein are given by:
RD ¼ �
r1qD

1þ r01qe
þ r2qeqd; ð2:2Þ

Rd ¼
r1qD

1þ r01qe
� r2qeqd; ð2:3Þ

RE ¼
r4qe

1þ r04qD
� r3qDqE; ð2:4Þ

Re ¼ �
r4qe

1þ r04qD
þ r3qDqE: ð2:5Þ
The constant r1 represents the association of MinD to the membrane [11]. r01 corresponds to the membrane-bound MinE,
suppressing the recruitment of MinD from the cytoplasm. r2 reflects the rate that MinE on the membrane drives MinD
on the membrane into the cytoplasm. Based on the evidence of the cytoplasmic interaction between MinD and MinE
[28], we let r3 be the rate that cytoplasmic MinD recruits cytoplasmic MinE to the membrane, while r4 corresponds to
the rate that MinE disassociates from the membrane to the cytoplasm. Finally, r04 corresponds to the cytoplasmic MinD, sup-
pressing the release of the membrane-bound MinE. The time scale of the diffusion on the membrane is much slower than
that in the cytoplasm. It is therefore reasonable to set Dd and De to zero.

In this dynamics, we allow for the Min-protein to bind/unbind from the membrane, but not for it to be degraded in the
process. Thus, the total amount of each type of Min-protein is conserved. The E. coli cell is a close-system, therefore the appro-
priated boundary condition is reflecting or hard-wall. The zero-flux J � �Dc@qc/@xa = 0 is imposed at the boundary regime.
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We apply the minimal linear stability analysis specifically to Min-protein RDEs [29] to determine in which conditions the
oscillatory pattern is expected to generate, using the case of the one-dimensional for the sake of simplicity. For practical
analysis of other RDEs systems, please refer to [30,31]. The obtained results could lead to parameter estimations, but to
do this we first write our set of Eq. (2.1) in the matrix form:
@~q
@t
¼ D

@2~q
@x2 þ

~f ~qð Þ; ð2:6Þ
where ~q is the Min-protein density vector and its elements are qc = qc(x, t); D is a diagonal matrix of diffusion coefficients Dc;
and~f ~qð Þ is a vector of reaction terms Rc. By perturbing with a small variation vector d~q from the homogeneous state ~q�, we
can define
~q � ~q� þ d~q; ð2:7Þ
where~q� can be obtained by evaluating @~q�
@t ¼

@~q�
@xa
¼~f ~q�ð Þ ¼ 0. Substituting (2.7) into (2.6) and taking a Taylor expansion to the

first order, we get:
@d~q
@t
¼ D

@2d~q
@x2 þ J�d~q; ð2:8Þ
where J� ¼ @~f
@~q

���
~q¼~q�

is the Jacobian matrix evaluated at the fix point ~q�. Applying the general solution for d~q ¼ d~q0exteiqx to Eq.
(2.8), we obtain the Eigen equation
Ad~q ¼ xd~q; ð2:9Þ
where A � �Dq2 + J*, x is the Eigen-value and q is the wave number. The real part of x will then determine if the equation is
linearly stable under a small spatial perturbation, whereas its imaginary part will determine the period of the oscillation,
T ¼ 2p
ImðxÞ : ð2:10Þ
If at least one Eigen-value x has a real part that is positive, then the homogeneous fix point is linearly unstable under a small
spatial perturbation.

Next, we apply linear stability analysis to the reaction–diffusion Eqs. (2.1)–(2.5) and obtain the matrix:
A ¼

� r1
1þr01q

�
e
� DDq2 r2q�e 0 r1r01q

�
D

ð1þr01q
�
eÞ

2 þ r2q�d
r1

1þr01q
�
e

�r2q�e 0 � r1r01q
�
D

ð1þr01q
�
eÞ

2 � r2q�d

� r4r04q
�
e

ð1þr04q
�
DÞ

2 � r3q�E 0 �r3q�D � DEq2 r4
1þr04q

�
D

r4r04q
�
e

ð1þr0
4
q�

D
Þ2
þ r3q�E 0 r3q�D � r4

1þr04q
�
D

2
666666664

3
777777775
: ð2:11Þ
We solve the Eigen Eq. (2.9) numerically. First, we use an iterative finite-different method to find the homogeneous fix points
of our system of Eq. (2.6). We carried out the iterations several times with different starting points, using parameter values
given by Howard et al. [13], and found only one fixed point, namely, q�D ¼ 116:873; q�E ¼ 3:36183; q�d ¼ 1383:13; q�e ¼
81:6382 (in the unit of lm�1). Then, with this fixed point, we are able to find the Eigen-value x of Eq. (2.9). It was found
that the positive real part of x is maximized at q = 1.5 lm�1. This indicates the presence of a maximum linear unstable oscil-
lating mode, with a wavelength of 4.2 lm [13,16,29].

3. Lattice Boltzmann method

The lattice Boltzmann method (LBM) for reaction–diffusion equations [32] is applied in order to simulate the Min-protein
system [15,16]. The lattice Boltzmann equation (LBE) [14,27] with the Bhatnagar–Gross–Krook collision (LBGK) [33] can be
written as
f c
i
~xþ~eiDt; t þ Dtð Þ � f c

i
~x; tð Þ ¼ �Dt

sc
f c
i
~x; tð Þ � f eq;c

i qc;~uð Þ
� �

þ DtSc
i ; ð3:1Þ
where f c
i ðx

*
; tÞ is the single-particle distribution function of species c associated with lattice velocity e

*

i at position x
*

and time
t; f eq;c

i ðqc; u
*
Þ is the local equilibrium corresponding Maxwellian distribution function with the local density qc and local fluid

speed u
*

; Sc
i is the source distribution function and sc is the relaxation parameter. The macroscopic quantities can be obtained

from the moments of the distribution function as follows:
X
i

f c
i
~x; tð Þ ¼

X
i

f eq;c
i

~x; tð Þ ¼ qc ~x; tð Þ; ð3:2Þ
X

i

Sc
i ¼ Rc: ð3:3Þ
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We consider the zero mean velocity (~u ¼ 0Þ flow. In addition, to obtain the correct reaction–diffusion equation, we need the
quantities:
X

i

~eif
eq;c
i

~x; tð Þ ¼ qc~u ¼ 0; ð3:4ÞX
i

~ei~eif
eq;c
i

~x; tð Þ ¼
X

i

ei;aei;bf eq;c
i

~x; tð Þ ¼ qcc2
s dab; ð3:5ÞX

i

~eiS
c
i ¼ 0; ð3:6ÞX

i

~ei~eiS
c
i ¼ 0; ð3:7Þ
where cs is the speed of sound. The choice of the equilibrium distribution function and the source term is dependent on the
constraint in (3.2)–(3.7). We chose the equilibrium distribution
f eq;c
i ¼ wiqc; ð3:8Þ
where wi is the lattice weight factor. For the source term, we chose the simple form
Sc
i ¼ wiRc; ð3:9Þ
where Rc is macroscopic reaction as defined in (2.1), as well as in (2.2)–(2.5). The choices given in (3.8) and (3.9) are the sim-
plest ones that can provide the correct macroscopic equations. We implement the LBM algorithm with two steps:

� Collision step: ~f c
i
~x; tð Þ ¼ f c

i
~x; tð Þ � Dt

sc
f c
i
~x; tð Þ � f eq;c

i qcð Þ
� �

þ DtSc
i ,

� Streaming step: f c
i
~xþ~eiDt; t þ Dtð Þ ¼ ~f c

i
~x; tð Þ.

The boundary condition is computed before streaming the resulting collision distribution function. Here we selected the
impermeable boundary condition [24] and the mid-grid bounce-back boundary condition [27], which is equivalent to the
hard-wall boundary at the macroscopic level. For simplicity, we set Dx = Dt = 1. Now let us consider the boundary domain
in the 2D system for illustration, located at b

*

¼ ðx ¼ 0; yÞ. The distribution functions in this domain are not permitted to com-
pute the collision step, but the streaming step is allowed. We define the adjacent fluid domain closest to the boundary do-
main located at g

*
¼ ðx ¼ 1; yÞ. If the boundary condition is mid-grid bounce-back (we will call this simply bounce-back), we

calculate the unknown distribution functions as
f c
i ðb

*

Þ ¼ f c
i ðb

*

� ei
*
Þ; ð3:10Þ
where b
*

�e
*

iDt must be inside the fluid domain. The accuracy of this boundary condition is known as second order [27]. The
impermeable boundary condition via the mirror-image method (we will call this simply mirror-image) [24] can be calcu-
lated by
f c
i ðb

*

Þ ¼ f c
k ðg

*
Þ; ð3:11Þ
Fig. 1. The flow chart demonstrates LBM implementation.
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where index k is the opposite direction of i corresponding to lattice velocity e
*

i. The flowchart of LBM implementation is sum-
marized in Fig. 1.

It has been shown, through the Chapman-Enskog analysis, that the continuum limit of LBE (3.1) recovers the correct reac-
tion–diffusion equations [32]. For the D1Q3 and D2Q9 lattice model, the reaction–diffusion equation (up to the second order
correction) is given by [15,16]
Fig. 2.
to the e

Fig. 3.
(middle
@qc

@t
� Dc

@2qc

@x2
a
¼ Rc þ O @3� �

; ð3:12Þ
where Dc ¼ c2
s sc � Dt=2ð Þ is the diffusion coefficient.
The density profile q(x, t) arrived at from LBM simulation with two different boundary conditions, bounce-back (s) and mirror-image (�), compared
xact solution (dashed line) from Eq. (4.1). The LBM results were simulated on 100 grids with D = 0.0028 and data was selected at iteration 10.

The partial time evolution of normalized-densities qD+d (left) and qE+e (right) at the selected positions, including x = 2(top), x = 99 (bottom) and x = 50
), for the two polar zones and middle-cell zone, respectively.
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4. Numerical results and discussion

We simulated the dynamics of Min-proteins oscillation with LBM, as described in the previous section, in both one- and
two-dimensional systems. For the one-dimensional system, we selected a one-dimensional lattice model with three allowed

velocities (D1Q3) where the lattice velocities are defined by e
*

i

n o
¼ f0;v ;�vg, and i = {0,1,2} is the lattice link index. The

weight factors for this case are given by w0 = 2/3 and w1 = w2 = 1/6. For two-dimensional system, we selected a two-dimen-
sional square lattice model with nine allowed velocities (D2Q9) where the lattice velocities are defined by

e
*

i

n o
¼ ð0;0Þ; ð�v ;0Þ; ð0;�vÞ; ð�v ;�vÞf g, and i = {0,1,2, . . . ,8} is the lattice link index. The weight factors for this case are

given by w0 = 4/9, w1 = w2 = w3 = w4 = 1/9 and w5 = w6 = w7 = w8 = 1/36. Here, v � Dx/Dt is the lattice speed magnitude; Dx
and Dt are the lattice spacing and time step intervals, respectively. Usually, we selected Dx = Dt = 1, which leads to v = 1
(for 2D, Dy = Dx). Therefore our system is dimensionless. The (dimensionless) speed of sound is cs ¼

ffiffiffiffiffiffiffiffi
1=3

p
for both D1Q3

and D2Q9 [34]. The relaxation time is calculated from sc = 3Dc + 0.5 for both cases. We implemented the LBM on a PC using
C programming.

First, we validated our LBM on the pure diffusion equation by dropping the reaction term (by setting Rc = 0) in the one-
dimensional system. The system was simulated on 100 grids, which represented a bacterium 2 lm long. In this situation, we
simulated only a single species of density: q(x, t) � qc(x, t). The dimensionless diffusion constant was set to be
D � Dc = 0.0028. We initialized the density with a delta-like function: q(x0 = 50, t = 0) � q0 = 1000. We show the density pro-
file q(x, t) from our LBM simulation with two different boundary conditions: bounce-back and mirror-image. We also com-
pare these results with the exact solution:
Fig. 4.
position
Each su
qðx; tÞ ¼ q0ffiffiffiffiffiffiffiffiffiffiffiffi
4pDt
p exp �ðx� x0Þ2

4Dt

" #
: ð4:1Þ
The results are shown in Fig. 2.
It was seen that both numerical results from the LBM and the exact solution (4.1) are in good agreement. This indicates

that the two different boundary conditions, namely bounce-back and mirror-image, have no effect whatsoever on the pure
The normalized-time-averaged MinD (left) and MinE (right) densities in 1D, relative to their respective time-average maxima as functions of the
along the bacterium cell, which compares the results from LBM with two different boundary conditions: bounce-back (s) and mirror-image (�).

b-plot magnifies as non-smooth due to the boundary effects at the polar zone.
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diffusion equation. However, the boundary conditions will affect the system when we take the reaction terms into account,
as we will see in the next simulation. It should be noted that since reaction terms of any given reaction–diffusion based mod-
el can greatly differ, depending on model details and dynamics, great care must be taken when making a general or universal
statement about the results.

To simulate Min-protein oscillation in a one-dimensional system, we initialized the distribution function from an equi-
librium state where MinD and MinE were randomly distributed as 3000 for qD, 170 for qE, and qd = qe = 0. We used the dif-
fusion constants and the reaction rate parameters as used in Ref. [13], which were tested for linear stability following Section
2. However, to put them into the LBM, we need to make all parameters dimensionless. The dimensionless parameters we
chose are DD = 0.28, DE = 0.6, r1 = 8 � 10�3, r2 = 2.52 � 10�2, r3 = 1.6 � 10�1, r4 = 3.2 � 10�4, r01 ¼ 280, and r04 ¼ 270. Be-
cause no diffusion occurs on the membrane, we set Dd = De = 0. We simulated the system up to 2.5 � 107 iterations. We com-
puted the total concentration in the cytoplasm and on the membrane of each Min-protein, qD+d = qD + qd for MinD and
qE+e = qE + qe for MinE, by excluding the boundary node.

The partial oscillations of Min-proteins in the one-dimensional system are shown in Fig. 3. Here, we used qD+d and qE+e at
the selected positions, including x = 2, x = 99 (at the polar zones) and x = 50 (in the middle-cell zone), and then we normal-
ized them. The (normalized) densities of Min-proteins evolve from the random-distributed initial state to the spatiotemporal
oscillation state with some transient time (see Fig. 3). We noticed that the transient times of the result when using the mir-
ror-image boundary condition are faster than when using the bounce-back boundary condition, approximately 1.5 times fas-
ter for all sets.

To observe the spatial topology of Min-proteins, we calculated the normalized-time-averaged MinD and MinE densities as
functions of position, as shown in Fig. 4. The MinE normalized-averaged-density peaks at the cell middle and has a minimum
at the cell rims, with MinD being nearly out of phase with MinE. This implies that MinE tries to prevent septum proteins from
being formed at the cell middle site and tries to suppress the inhibitor, MinD, from this region. To validate this conclusion,
we compared the numerical results to the experimental data compiled by our group members [17,18]. When we compared
the LBM results with the experimental results, they were in qualitative agreement. These results are also in qualitative agree-
ment with the experimental data by another group [12], as well as the numerical results obtained in another work [13].
Fig. 5. The normalized-time-averaged MinD (left column) and MinE (right column) densities in 2D, relative to their respective time-average maxima as
functions of the position (x,y) inside the bacterium cell. Comparison results from LBM with two different boundary conditions: bounce-back (upper row)
and mirror-image (lower row).
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We then extended our simulation to a two-dimensional system. The system was simulated on 50 � 100 grids, which rep-
resented typically a bacterium 1 � 2 lm in size. We initialized the distribution function from an equilibrium state where
MinD and MinE were randomly distributed as 3000 for qD, 170 for qE, and qd = qe = 0 for each grid point. The dimensionless
parameters were chosen in the same way as in the one-dimensional case. The normalized-time-averaged MinD and MinE
densities as functions of position are shown in Fig. 5 for this case. It was found that the average densities of Min-proteins
are nearly homogenous in x-direction; therefore the dominant dynamics oscillation of Min-proteins were expressed in y-
direction. Due to this reason, the dynamics in 2D are exactly identical to that in 1D.

Regarding the effect of boundary conditions, namely bounce-back and mirror-image, on dynamic oscillation, differences
in simulation results via LBM were noticeably found. We observed in the Min-protein densities at the boundary node a por-
tion of a non-smooth curve when using the bounce-back boundary conditions, whereas the densities were found to be very
smooth at the boundary node when using the mirror-image boundary condition for both one- and two-dimensional systems
(see Figs. 4 and 5). This happened for both MinD and MinE, but was more prominent in the former. The difference in the
degree of non-smoothness is mainly due to the difference in protein copy concentrations. Interestingly, it evidently appears
that reaction terms respond differently to different boundary conditions. This may suggest that one should take greater care
in boundary conditions than one might expect when applying LBM for the RDE based model, especially for the model where
reactions crucially occur at the boundary.

It is worth mentioning that there are several published methods for boundary treatments via LBM for the hydrodynamics
system. Among them, the bounce-back seems to be the most popular for non-slip type boundary implementation. This per-
haps is due to the fact that it ensures that the components of the fluid velocity vanish at the boundary. However, this method
cannot be applied to solute transport, especially the reaction–diffusion system, because the nature of dispersion-transport
boundaries differs from hydrodynamics boundaries [27]. The diffusive system requires that the flux vanish (J � �Dc@qc/
@xa = 0) at the boundary and the mirror-image implementation satisfies this constraint [35]. Lastly, it is obviously seen from
our results that the mirror-image boundary condition is better than the bounce-back boundary condition for the simulation
of this model via the LBM.

5. Concluding remarks

In this paper, we investigated the effects that boundary conditions have on the LBM when simulating the dynamic oscil-
lation of Min-proteins and describing MinD/MinE interaction [15,16]. We applied the mirror-image boundary condition sug-
gested by Zhang et al. and the mid-grid bounce-back boundary condition [24] to our reaction–diffusion lattice Boltzmann
model. We compared the results from two boundary conditions and found that the mirror-image method is a suitable
boundary condition for this Min-protein problem, as far as the smoothness of the data curves is concerned. The degree of
non-smoothness varied, depending on Min-protein species or concentrations. However, more work is required to understand
which boundary condition is the most appropriate for a given model. It is reasonable to say that the LBM approach could
provide an alternative fast computational tool for studying Min-protein oscillation. It provides numerical results which
are in qualitative agreement with experimental results [12,17,18]. However, optimization treatment, especially regarding
boundary conditions, could be a very important issue. Still, we believe that the LBM is a useful scheme for simulating at
the cellular level those biological systems governed by reaction–diffusion equations.
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